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ABSTRACT

Charge collected by diffusion from ion tracks in a semiconductor substrate maybe
influenced by the substrate diffusion length, which is related to recombination losses. A
theoretical analysis shows that, excluding some extreme cases, charge collectionis
insengitive to spatia variations in the diffusion length function, so it is possible to define an
efTective difTusion length having the property that collected charge can be approximated
by assuming a uniform diflusion length equal to this effective value. Extreme cases that
must be excluded are those in which alarge number of recombination centers are confined

to a narrow region near the substrate boundary.
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1. Introduction

Measurements of charge collected by epi SRAMS from ion tracks were compared to a
model prediction [1]. The model predicts collected charge to consist of the charge
liberated in the cpi layer, plus an additional contribution that diffuses to the epi from the
heavily doped substrate below. The latter charge is controlled by the substrate diffusion
length, which is related to losses from recombination centers (RCs), and the model
calculates this charge from the “uniform approximation” which assumes a spatially
uniform effective diffusion length. The model predictions fit the data very well for both
virgin devices and devices that had a greatly reduced diflusion length as a result of
extensive exposure to heavy ion irradiation. The excellent agreement may be somewhat
surprising because the actua diffusion length function islikely to be spatially nonuniform
(particularly in a heavily irradiated device having a reduced diffusion length) due to a
nonuniform distribution of RCs, yet the same effective value accurately predicts collected
charge from any ion track, long or short. The experimental data tend to validate the

uniform approximation, but no theory was given to explain how this can be.

"The present paper provides atheoretical explanation. The analysis will show that,
excluding some extreme cases, charge collection is insensitive to spatial variations in the
RC distribution, even when these variations are large. Different distributions that result in
the same collected charge from tracks that are effectively infinitely long, aso result in
approximate cl y the same collected charge from any track, long or short, 1*he uniform
approximation using an appropriately chosen effective diffusion length will be shown to be

arcasonably good approximation for all but the most extreme cases.

It should be noted that there are extreme theoretical cases such that the uniform
approximation fails, Although such cases arc not relevant to the experimental observations
discussed above, they may become relevant under some other circumstances, so it is

important to note that the uniform approximation has limitations. Both types of cases




(those in which the approximation works well, and those in which it does not) arc first

discussed in Section 3 and then illustrated by examplesin Section 4.

The conclusions to follow are derived from the assumption that the linear track density
(charge density per unit distance) is uniform over a finite track length. ‘I’ he actual density
is not uniform, particularly when the track is short enough so that collected charge
depends on track length. Thisis aweakness of the present analysis because variationsin
the track density will change quantitative results. It is postulated that such changes in
guantitative results will not be large enough to change the qualitative conclusions that
follow. This postulate is at |east credible, and is consistent with the experimental

observations discussed earlier.

The assumed physical arrangement consists of a device substrate containing an ion track
which extends from the upper substrate surface to a depth equal to the track length.
The upper substrate boundary is assumed to be an infinite plane which isasink for
minority carriers. The substrate is assumed to be infinitely thick, although the anaysis in
the appendix also treats finite thicknesses. The linear track density is assumed to be
uniform over the track length, so the track iscompletely described by two parameters,
which are the track length and the linear density. Charge that reaches the upper surface via
diffusion from the track is determined by the two track parameters and by the substrate
diffusion length function which describes recombination losses in the substrate. The
diffusion length function isassumed to be laterally uniform, but Jnay be highly nonuniform

in the vertical coordinate due to a nonuniform RC density.

The uniform approximation estimates collected charge by assuming some appropriately
selected uniform diffusion length. The objective is to use diffusion theory to show that this

approximation can, sometimes, provide a reasonably accurate estimate, even when the




actual diffusion length function is highly nonuniform. The uniform approximation will
obviously produce correct results if appropriate, and possibly different, uniform diffusion
lengths are assumed for different ion tracks. ‘I’he objective is to show that reasonably
accurate estimates can be obtained for any ion track when the same effective diffusion
length is assumed for al cases. Let Q(z) denote collected charge when the track lengthis
z. The objective is to show that there is an effective diffusion length having the property

that the uniform approximation produces a reasonably accurate estimate of Q(z) for any ~.

between O and oo,

The linear track density implicitly contained in Q(z) is superfluous when investigating the
adequacy of the uniform approximation. It is convenient to define a normalized Q, which
is denoted I(z) and defined to be Q(z) divided by the linear track density. Note that 1(2)
has the dimensions of distance. The quantity 1(m) has a specia significance because it has
two interpretations. The first interpretation is immediately implied by its definition; it is the
normalized charge collected from an infinitely long track. Note that for the special case of
a uniform diffusion length, the normalized charge collected from an infinitely long track
equal s the diffusion length. Therefore the second interpretation of 1(«) isan effective
diffusion length. It is the value that must be assigned to the effective diffusion Iength in
order for the uniform approximation to correctly predict collected charge from an
infinitely long track, in fact, I(e) isthe effective diffusion length that will be used with the
uniform approximation in all discussionsto follow, This choice for the effective diftusion
length insures that the uniform approximation will be accurate whenever thetrack is
sufTiciently long. But it isstill not clear how long is “sufliciently long”, or how good the
approximation is when the track is not sufliciently long. These questions are answered in

the following sections.




3. Upper_and l.ower Bounds

Because 1(e0) has a dual interpretation, it is sometimes a convenient unit for measuring
both the dependent variable 1(z) and the independent variable z, i.e., it is sometimes
convenient to plot the dimensionless parameter 1(z)/1(«) against the dimensionless
parameter z/1(«). The first parameter is interpreted as the charge collected from a track of
length z divided by the charge collected from the infinitely long track, while the second is
interpreted as the track length divided by the effective difTusion length. The uniform

approximation is expressed in terms of these dimensionless parameters as

1@ _ ( 2 ) . o
() 1- exp — ]%OO) (uniform approximation). (1)

It is shown in the appendix that, no matter what the actual diffusion length function s, an

upper bound for the actual 1(z)/1 () iS given by
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Unfortunately, there is no universal lower bound, except zero. To obtain anontrivial lower
bound, it is necessary to impose a constraint that limits the diffusion length functions that
may be considered. ‘I’ he type of constraint that is convenient from the point of view of
analysisisto stipulate that less than some specified fraction of collected charge may come
from depths exceeding some specified multiple of the eflective diffusion length. For

example, we might consider the diffusion length functions satisfying the constraint
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Less than 10% of the charge collected from the
infinitely long track is from depths exceeding 3
JSour times the effective diffusion length.

It is shown in the appendix that alower bound for any 1(z)/1(«) consistent with this

constraint is given by

99 2 iy <4
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1(o0) ,
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Plots of the right sides of(1), (2), and (4) are shown in Figure 1. This paper calls a 20%
error “reasonably good”, so agreement between the upper bound and the uniform
approximate ion is reasonably good. This implies that agreement bet ween the uniform
approximation and any actual curve that is above this approximation must also be
seasonably good, because any such curve is bracketed between the uniform approximation
and the upper bound. But agreement between the uniform approximation and the lower
bound is not as good. 1f the constraint (3) is relaxed to include a larger class of diffusion
length functions, the lower bound becomes lower and agreecment becomes worse. ‘I” he
uniform approximation fails badly when the actual curve approximates the lower bound

corresponding to a constraint that is more relaxed than (3).

It is unfortunate that there are cases such that the uniform approximation does not work
well. It can be shown that such cases arc produced when a very large number of RCs arc
confined to a very narrow region that is very close to the upper surface, But the
approximation is reasonably good under all other conditions. For example, if avery large
number of RCs are confined to a very narrow region, but thisregion is at a depth of at
least three halves of the effective diflusion length, the actual curve will resemble the upper

bound in Figure 1, whichisfairly close to the uniform approximation. The approximation




becomes even better for the less extreme cases in which the RC density is spread out to
the extent that the density does not vary by more than afactor of afew (e.g., 5 or less).
For these cases, the actual curve will look more like the uniform approximation than either
bound shown in Figure 1. These statements arc illustrated by numerical examplesin the

next section.

4. Numerical Examples

The statements at the end of the previous section can be illustrated by numerical
exampl es representing some actual measured data that were discussed at the beginning of
Section 1. The heavily irradiated devices having reduced difTusion lengths are the most
interesting because they arc likely to have the greatest nonuniformity in the RC density.
Charge collection measurements found the effective diflusion length to be about 2 pm for
these devices, The virgin devices were found to have an effective diffusion length of about
10 pm. *J here was suflicient evidence that this difference between diffusion lengths is not
due to random part-to-part variations, so it is assumed that the irradiated devices had a 10
um diffusion length prior to irradiation. Other than constraints imposed by this
information, it is not known what the spatial distribution of the post-irradiated RC density
is. We will consider a sampling of all possible distributions consistent with the measured
data and compare the exact 1(z), corresponding to an assumed distribution, to the uniform
approximation for each case. The reciprocal of the diffusion length function, which isa
measure of the RC density, is assumed to be a blip (possibly narrow or possibly broad)
representing a (possibly localized or possibly spread-out) RC distribution produced by
irradiation damage. The asymptotic (large depth) value of the diffusion length function is
assumed to be the prc-irradiated value. The mathematical form of the diffusion length
function, which was selected primarily on the basis of analytical tractability, is deferred to
the appendix because the qualitative characteristics shown in the figures discussed later arc

probably more relevant than mathematical expressions.



We consider a sampling of all possible diffusion length functions which are described by
the equations in the appendix, have the asymptotic value of 10 um, and are consistent
with 1(m)= 2 um. The sampling is worst-case from the point of view of demonstrating
adequacy of the uniform approximation. This is accomplished by making the blip width as
narrow as possible (within limits stated below), to obtain the greatest possible
nonuniformity consistent with the stated conditions. Depending on the location of the blip
center, an arbitrarily narrow blip may be mathematically compatible with the stated
conditions if the blip amplitude is correspondingly large. This occurs when the blip is
sufliciently close to the surface. When thisis the case, the blip width is taken to be about 1
um because thisis sufficiently close to the mathematical limit (the blip approximates a
Dirac delta function). But if the blip center is sufficiently deep, it is no longer true that an
arbitrarily narrow blip can satisfy the condition that I(m) =- 2 um. Some spread is required
so that the RC density extends to higher locations. When thisis the case, the blip width is
selected to be the smallest value such that the condition can be satisfied. It can be shown
that the demarcation between these cases occurs when the blip center depth is
approximately twice the effective diffusion length (or 4 pum for the examples to follow).
The approximation is accurate when recombination from the RCs outside and above the
blip can be neglected. The sampling will usc a1 jum blip width (approximately) if the blip
center is at adepth less than 4 pm, and the minimum allowed blip width for larger depths.

Note that the shallow blips could be excluded on the basis of relevancy to the measured
data, because a shallow and narrow blip could only be produced by damaging ions that
stop near the top of the device. The damage in the parts considered was produced by ions
having much longer ranges. Excluding the narrow and shallow blips will give a much more
favor-able impression regarding the adequacy of the uniform approximation, But such
cases may be relevant under other circumstances and it may be important to know that the
uniform approximation does not always work well. Therefore the sampling includes such

cases even though they are not relevant to the measured data.



The sampling is shown in Figures 2 through 6. Each figure presents an assumed RC
distribution, measured in terms of the reciprocal of the diflusion length function 1., and
compares different predictions of the normalized collected charge 1. Thez inLy(z) is
interpreted as depth, while the z in 1(z) is interpreted as track length. Each 1 curve
identified as “exact” was calculated from the exact equation describing the assumed 1.1,

function.

The exact curve in Figure 2 resembles the uniform approximation when z is less than 1
pm because this places the track above the blip. But the exact curve is approximately
linear and far below the uniform approximation for larger z. in fact, the exact curvein
Figure 2 is even lower, at the larger values of z, than the lower bound shown in Figure 1.
This is because the exact curve in Figure 2 violates the constraint (3) that applies to the
lower bound in Figure 1. If the blip is moved higher than the 1 um depth, the point where
the exact curve and uniform approximation diverge in ¥igure 2 will move further to the
lefl, and the exact curve will approximate the lower bound corresponding to a constraint
that is much more relaxed than (3). Such small blip depths are the problem cases in which
the uniform approximation fails badly. But the approximation becomes better asthe blip is
moved down. It is still not very good in Figure 3, but is reasonably good in Figures 4 and
5. Note that the exact curve in Figure 5 resembles the upper bound in Figure 1. The blip in
Figure 5is as deep asit can be without increasing the blip width. It isimpossible for 1(«)
to be assmall as 2 pum unless the blip adds some RCs to the region above the 4 pm depth.
A blip deeper than 4 pum implies that there must be some spread such as shown in Figure
6, Now that some spread is present, the uniform approximation becomes quite good.
Although there is some spread, the RC density is still very nonuniform. It is therefore

rather impressive that the uniform approximation works so well.

If the trend started by Figures 2 through 6 is continued beyond Figure 6, the RC density
becomes progressively more uniform and the uniform approximation becomes
progressively better. Even Figure 6 probably did not carry the trend far enough to

represent the actual test devices. The uniform approximation is probably even more



accurate, for the RC distribution in the actual devices, than indicated in Figure 6. ‘I'his
explains the successful application of the model discussed at the beginning of Section 1

5. Conclusions

Accuracy of the uniform approximation was theoretically investigated for the case in
which the effective diffusion length used in the approximation is set equal to the charge
collected by the infinitely long track divided by the linear track density. It was found that
the approximation does not always work well. It fails badly when alarge number of RCs
arc confined to a narrow region at a depth less than three halves of the effective diffusion
length. But when such extreme cases are excluded, charge collection isinsensitive to
spatia variations in the RC distribution (subject to the important qualification that all
distributions being compared produce the same effective diffusion length), and the uniform
approximation ranges from reasonably good to excellent. The approximation is very good
for the type of RC distribution that is expected in some actual devices, and thisisthe
theoretical explanation for the successful application of the model discussed at the
beginning of Section 1.

APPENDIX: MATHEMATICAL ANALYSIS
A 1. An Expression for 1(z)
We eventually consider substrates that are effectively infinitely thick, but it is convenient
to start with afinite thickness1. and take alimit later. The substrate isimagined to lie
between two infinite planes which arc both sinks for minority carriers, It was shown [2]

that the amount of charge Q reaching the upper plane viadiffusion from an ion track can
be calculated from
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where Pyistheinitial track density (charge per unit volume) and 2 is the charge-collection

efliciency. The two coordinates ¢ and &; are lateral coordinates, while ¢ is the
longitudinal coordinate. The charge-collection efficiency is calculated by solving the

boundary vaue problem

viQ- f 2Q in substrate, Q=1 onupper plane, Q=0 onlower plane

where f isthe reciprocal of the diffusion length function. It is assumed that { depends only
on the longitudinal coordinate, so €2 depends only on the longitudinal coordinate.

Suppressing the superfluous coordinates, the equation for €2 becomes

d*Q)

w2 OO for 0< ¢ <101 00)- 0. (A

integrating the equation for Q with respect to the lateral coordinates gives

0|7 ptoy A ¢

where p isthe linear track density (charge per unit length) We consider the case where
this density is uniform over atrack length z <1, so that p isastep function. It is zero when
€ > z,and constant when { < z. Dividing Q by this constant produces 1 which is calculated

from

10)- |, A& (A2)
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A2. An Upper Bound

When f is specified and €2 is known from (Al), 1(z) can be calculated from (A2). But the
present objective is to obtain a bound for the ratio 1(z)/1(1.) which can be derived when f is
not specified and €2 is not known. Such a bound can be obtained by replacing the
unknown € on the right side of (A2) with an expression that still contains the unknown €2,
but has some properties of €2 built into it so that information can be extracted without
requiring that  be solved. Such an expression can be obtained by converting (Al) into an

integral equation. integrating (Al ) twice and then using an integration by parts to change
the appearance of the result gives

1LQ@) =1 ~z- jol' G(z,0) f2(OHSAdS (A43)

where the Green’s function G is given by

(L-2)¢ if 0<¢<z<1.
G(z,6) =
(I -8z if 0<z<¢ <.

Substituting (A3) into (A2) and changing the order of intcgration gives

L1@-U-212) z - jol H(z,O) Y2 (&) d¢ (A4)

where 11 and Y are defined by

/210U &) if0<z<¢<]
H(z0) - (As)
(L-212)z- LL12 if 0<E<z< ],
¥2(0)=¢ 126D
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Note that (Al ) impliesthat € is not negative anywhere, so ¥ is not negative anywhere.
Another property of ¥ can be derived by first differentiating (A3) and evaluating the

derivative at z = 1. to get

da02z)
Lo

T2 46
o Yo a1 (46)

Note that €2(1.) = O and Q2 is not negative anywhere, so Q2 cannot be increasing in any
neighborhood of the point z = 1.. Therefore the derivative on the left side of (A6) cannot

be positive. Combining this observation with (A6) gives

1
fo 32 d <1, (A7)

Another equation containing ¥ is obtained by evaluating (A4) at z = |. while using (A5)
to get

jol (1L- OV de = 1- 21(L). (As)

An important property of 11(z,(), implied by (AS), isthe type of curvature that it has
when plotted against £ with z fixed. When £ € (0,z), Hislinear in {. When L e (x,].), H
has the curvatureillustrated in Figure A 1. The H curve is convex when viewed from the
lefl, so it is bounded below by any tangent line, such asillustrated by the lower dashed line
in the figure (the upper dashed lineis needed in Section A3). Selecting any tangent line,

which is tangent to the ] curve at { = any A ¢[z].], we have the bound

2
11(z,§),>~2;2[11 (L~ (- H] i ¢e0,1) and Aclz,1)  (49)
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which appliesto any C € [0,1.] and any A €[z,1.]. The right side of (A9) is the equation of
the tangent line, regarded as a function of ¢ with z fixed. Multiplying (A9) by ¥? and
integrating and then using (A4), (A7), and (A8) to substitute for the integrals gives

I(2) sz+z2[-]j]5)-—»ﬂyf z e[0,1)and Ac [z 1] (A10)

which appliesfor any A €[z,].]. In particular, (Al O) applieswhen A =z and we obtain
the obvious result [(z) <1(1.). A stronger statement can be made when z < 21(1.) because

wc can then let A = 21(1.) and (A 10) becomes

2

1(2)<z—- z

) if z<2I(l)

When the above inequality does not apply, wc till have 1(z) < 1(1,), so the bound can be

expressed as

r- z o _1[’ z 2} f Z <2
@ ) Aty Y ow
1(1) < (Al'1)

The upper bound given by (Al 1) isthe smallest upper bound that applies when no
restrictions arc imposed on the function f, This can be demonstrated by showing that the
bound is approached by a limiting case. To demonstrate this, first note that the lefl side of
(A8) isnot negative, so 21(1.) <1, (it can be seen from (Al) and (A2) that the equality
applics when f= O everywhere). The limiting case occurs when £2(£) is aDirac delta
function centered at<=- 21(1,) and with an infinite coeflicient selected so that a plot of

Q(C) (satisfying (Al)) isastraight line connecting the point (£,€2) = (O, 1) to the point

14



(21(1.),0), and with (€) = O for £ > 21(1,). A direct evaluation of 1(z) from (A2) using this
Q) produces the right side of (Al 1).

The large 1, limit shown as (2) in Section 3 is obtained by simply replacing L withoo in
(All).

A3. A l.ower Bound

The curvature of 1 | discussed in Section A2 and illustrated in Figure A 1 impliesthat 11is
bounded by the chord connecting the end points (the upper dashed line in Figure Al). This
gives the inegquality

LH(, <z -212).-¢) forallze [O, Iland all { € [0, 1)].

Multiplying this inequality by ¥ and integrating and then using (A4) and (A8) to
substitute for the integrals gives

2
1G) ,2 {Z ‘ forallz¢ [0, 1. (412)

= > —_— ] -
AN

The lower bound given by (A 12) is the smallest lower bound that applies when no
restrictions are imposed on the function f. This can be demonstrated by showing that the
bound is approached by a limiting case. Such a case occurs when f2({) is aDirac delta
function centered at £ =- 0+, and with a coefTicient selected so that a plot of €2(C)
(satisfying (Al)) first connects the point (£,Q2): (O, 1) to the point (0+,21(1,)/1.), and then
becomes a straight line connecting the point (0+,21 (1.)/1,) to the point (1.,0). A direct
evaluation of 1(z) from (A2) using this Q) produces the right side of (Al 2).



Note that the upper bound in (Al 1) and the lower bound in (A 12) come together when
the ratio 1./1( 1.) is closc to the smallest allowed value (which is 2). This could have been
anticipated from the fact that there is only onc possible f (zero) which can make 21(1.) =1,
so Q2 is completely determined in this limit. Unfortunately, our concern is with the
opposite extreme of a large 1,/1(1.). Replacing 1. with o in (Al 2) produces a lower bound
of zero. To obtain anontrivial lower bound, it is necessary to impose some constraint that

restricts the set of functions that f may be selected from.

The type of constraint that is convenient for analysis is obtained by selecting some depth
7.¢(0,1.) and some fraction a. € (O, 1), and stipulate that the fractional contribution to

1(1 ), from charge collected from a depth exceeding Z, is not larger than o, i.e.,
[7(1)--1(z)N/1U) <a, (413)

A bound consistent with (A 13) can be derived by first evaluating (A4) at z = Z and then
usc (Al 3) to eliminate the I(Z) to get

IOI HZOYXOde < ~212)7Z- 1L(-a) (). (A14)

1f z > 7, we have the obvious bound I(z) > 1(Z) > (1 -a) 1(1.), Wc now consider the case
where z<Z.Three possibilities to consider are { ¢[0,z],{ [z, 7], and {c[Z,1 ]. It can

be shown from (AS) that all three possibilities result in

(1/-212)2

NGOGy ,1E0

with the equality applying when ¢ =- O. Multiplying the above inequality by ¥ and
integrating and then using (A4) and (A14) to substitute for the integrals gives
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1(z) > 0 2z ® a) W)> (z/Z2) (L—a)I(L)if <z <7,

It is convenient to express Z as some multiple y of I(L). Using this notation, the bounds

arc expressed as

(G-a) z oz
@) y 1y Yoyt
“](*]*5 >4 (A15)

(1-a) if

oz
1)’
which provides a nontrivia result in the large 1. limit.

As an example, suppose the set of possible diffusion length functions, that the bound is to
apply to, isrestricted by the constraint that less than 10°/0 of the charge collected from the
infinitely long track is from depths exceeding four times the effective diffusion length. We
thenlet].= o, 0 =:0.1, y =- 4, and (Al 5) becomes (4) in Section 3.

A4. Calculations Used for the Examples

The numerical examples in Section 4 were obtained by solving (Al) with f selected to
represent some cases of interest. The easiest way to solve this problem is backwards.
Instead of selecting an f representing a case of interest and attempting to solve (A 1) for €2,
itiseasier to select an 2 and use (Al) to find out what f is. This isatrial and error
method, If the f produced by a selected Q2 does not approximate the function that wc
would like it to be, it is necessary to try again with another Q. The €2 used for the

numerical examples is given by
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Qz)= Bexp(—k 2) + AW lnlr 1+ CX[(’—Z%;;'E)J (416)

where k, A, W, and z, are constants satisfying

k>0, O< W< I/k, A20,2z920, AW In[l+4 exp(zg /W)l <1

but are otherwise arbitrary. The constant B is not arbitrary. It is calculated from

B:=1- AW In[l4exp(zy /W)].

The reciprocal of the diffusion length function used in the examples is f calculated from
(Al') and (Al 6). Theresultisablip, illustrated in the figuresin Section 4, which has an
asymptotic value equa to k. “I’he blip center depth is approximately z, when the blip is
narrow. The relationship between blip depth and z, is more obscure with wider blips, but
the depth increases when z, increases. The blip width is most strongly influenced by W and
increases when W increases. The blip amplitude is most strongly influenced by A and

increases when A increases.

The normalized charge |(z) is calculated from (A2) and (Al 6). To evaluate the integral in
(A2), it is necessary to evaluate the integral S defined by

N
S(X) = j’o In[14 exp(- 1)] dr

Special values arc given by S(0) = O and S(m)== n’/12. The argument X can have either

sign. When X > 0, S can be evaluated from the series

7[2 R4 ])m-—l
Sy o200 exp(-mX) if X >0

m=1 M
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‘I"he series converges very sowly when X ~ O, athough convergence is faster for larger X.
Calculations used for the examples approximated the series with the first 100 termsfor all
X > 0. Truncation errors are reduced by adding the terms in reverse order. The series

divergesif X < 0. This case can be treated by first converting the argument to a positive

number using the identity

S(X) =- -s(-X) - X% /2

and then using the series to evaluate the term containing the positive argument.
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FIGURE CAPTIONS

Figure 1: Plots of the uniform approximation, the upper bound (no restrictions), and the

lower bound (subject to (3)).

Figure 2: The assumed L, in (a) produces the exact 1 in (b), which is compared to the

uniform approximation in (b).

Figure 3: ‘I’he assumed 1.;, in (&) produces the exact 1 in (b), which is compared to the

uniform approximation in (b).

Figure 4: The assumed 1, in (a) produces the exact 1 in (b), which is compared to the

uniform approximation in (b).

Figure 5: The assumed 1., in (@) produces the exact 1in (b), which is compared to the

uniform approximation in (b).

Figure 6: The assumed 1.1, in (a) produces the exact 1 in (b), which is compared to the

uniform approximation in (b).

Figure Al: lllustration of the curvature of H(z,{) when plotted against ¢ with z fixed. The
I'1 curve (solid) is bounded above by the chord connecting the end points (upper dashed

line), and bounded below by any tangent line, such as the lower dashed line shown,
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Figure 2: The assumed 1., in (a) produces the exact | in (b), which is compared to the
uniform approximation in (b).




g 10

2.0 T
1.5

3.

~ 1.0

Vi

N

g

—t
0.5 |- - -
0.0 ol —L-

0 1 2

Figure 3: The assumed 1., in (&) produces the exact 1 in (b), which is compared to the

uniform approximation in (b).

T I "'T"L L;r'—_—_."' pm—e

exact
uniform approximatior

7 (pem)




(a)

0
0.5 | - - exact
uniform approximation
0,0 oL - [ R P B B I A T A
0 1 2 3 4 5 6 7 8 9 10
7. (pem)

Yigure 4: The assumed | ., in (a) produces the exact | in (b), which is compared to the
uniform approximation in (b).
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H(z,£)

Iigure Al: illustration of the curvature of 1(z,() when plotted against £ with z fixed. The
} 1 curve (solid) is bounded above by the chord connecting the end points (upper dashed
line), and bounded below by any tangent line, such as the lower dashed line shown,



